PPPoE

Document revision 1.6 (Mon Jul 17 14:11:18 GMT 2006)
This document applies to V2.9

Table of Contents

Table of Contents
General Information
 Summary
 Quick Setup Guide
 Specifications
 Related Documents
 Additional Documents
PPPoE Client Setup
 Description
 Property Description
 Example
Monitoring PPPoE Client
 Property Description
 Example
PPPoE Server Setup (Access Concentrator)
 Description
 Property Description
 Notes
 Example
PPPoE Users
 Description
PPPoE Server User Interfaces
 Description
 Property Description
 Example
Application Examples
 PPPoE in a multipoint wireless 802.11g network
Troubleshooting
 Description

General Information

Summary

The PPPoE (Point to Point Protocol over Ethernet) protocol provides extensive user management, network management and accounting benefits to ISPs and network administrators. Currently PPPoE is used mainly by ISPs to control client connections for xDSL and cable modems as well as plain Ethernet networks. PPPoE is an extension of the standard Point to Point Protocol (PPP). The difference between them is expressed in transport method: PPPoE employs Ethernet instead of modem connection.

Generally speaking, PPPoE is used to hand out IP addresses to clients based on the user (and workstation, if
desired) authentication as opposed to workstation only authentication, when static IP addresses or DHCP are used. It is advised not to use static IP addresses or DHCP on the same interfaces as PPPoE for obvious security reasons.

MikroTik RouterOS can act as a RADIUS client - you can use a RADIUS server to authenticate PPPoE clients and use accounting for them.

A PPPoE connection is composed of a client and an access concentrator (server). The client may be any computer that has the PPPoE client protocol support installed. The MikroTik RouterOS supports both - client and access concentrator implementations of PPPoE. The PPPoE client and server work over any Ethernet level interface on the router - wireless 802.11 (Aironet, Cisco, WaveLAN, Prism, Atheros), 10/100/1000 Mbit/s Ethernet, RadioLAN and EoIP (Ethernet over IP tunnel). No encryption, MPPE 40bit RSA and MPPE 128bit RSA encryption is supported.

Note that when RADIUS server is authenticating a user with CHAP, MS-CHAPv1 or MS-CHAPv2, the RADIUS protocol does not use shared secret, it is used only in authentication reply. So if you have a wrong shared secret, RADIUS server will accept the request. You can use /radius monitor command to see bad-replies parameter. This value should increase whenever a client tries to connect.

Supported connections

• MikroTik RouterOS PPPoE client to any PPPoE server (access concentrator)
• MikroTik RouterOS server (access concentrator) to multiple PPPoE clients (clients are available for almost all operating systems and most routers)

Quick Setup Guide

• To configure MikroTik RouterOS to be a PPPoE client
 1. Just add a pppoe-client:

```
/interface pppoe-client add name=pppoe-user-mike user=mike password=123 \
... interface=wlan1 service-name=internet disabled=no
```

• To configure MikroTik RouterOS to be an Access Concentrator (PPPoE Server)
 1. Add an address pool for the clients from 10.1.1.62 to 10.1.1.72, called pppoe-pool:

```
/ip pool add name="pppoe-pool" ranges=10.1.1.62-10.1.1.72
```

 2. Add PPP profile, called pppoe-profile where local-address will be the router's address and clients will have an address from pppoe-pool:

```
/ppp profile add name="pppoe-profile" local-address=10.1.1.1 remote-address=pppoe-pool
```

 3. Add a user with username mike and password 123:

```
/ppp secret add name=mike password=123 service=pppoe profile=pppoe-profile
```

 4. Now add a pppoe server:

```
/interface pppoe-server server add service-name=internet interface=wlan1 \
... default-profile=pppoe-profile
```
Specifications

Packages required: **ppp**
License required: level1 (limited to 1 interface), level3 (limited to 200 interfaces), level4 (limited to 200 interfaces), level5 (limited to 500 interfaces), level6 (unlimited)
Home menu level: /interface pppoe-server, /interface pppoe-client
Standards and Technologies: **PPPoE (RFC 2516)**
Hardware usage: **PPPoE server may require additional RAM (uses approx. 9KiB (plus extra 10KiB for packet queue, if data rate limitation is used) for each connection) and CPU power. Maximum of 65535 connections is supported.**

Related Documents

- Software Package Management
- IP Addresses and ARP
- RADIUS client
- PPP User AAA
- Log Management

Additional Documents

Links for PPPoE documentation:

- http://www.faqs.org/rfcs/rfc2516.html

PPPoE Clients:

- RASPPPoE for Windows 95, 98, 98SE, ME, NT4, 2000, XP, .NET

PPPoE Client Setup

Home menu level: /interface pppoe-client

Description

The PPPoE client supports high-speed connections. It is fully compatible with the MikroTik PPPoE server (access concentrator).

Note for Windows. Some connection instructions may use the form where the "phone number", such as "MikroTik_AC\mt1", to indicate that "MikroTik_AC" is the access concentrator name and "mt1" is the service name.

Property Description

- **ac-name (text; default: "")** - this may be left blank and the client will connect to any access concentrator that offers the "service" name selected
add-default-route (yes | no; default: no) - whether to add a default route automatically
allow (multiple choice: mschap2, mschap1, chap, pap; default: mschap2, mschap1, chap, pap) - the protocol to allow the client to use for authentication
dial-on-demand (yes | no; default: no) - connects to AC only when outbound traffic is generated and disconnects when there is no traffic for the period set in the idle-timeout value
interface (name) - interface the PPPoE server can be connected through
mru (integer; default: 1480) - Maximum Receive Unit. The optimal value is the MTU of the interface the tunnel is working over decreased by 20 (so, for 1500-byte ethernet link, set the MTU to 1480 to avoid fragmentation of packets)
mtu (integer; default: 1480) - Maximum Transmission Unit. The optimal value is the MTU of the interface the tunnel is working over decreased by 20 (so, for 1500-byte ethernet link, set the MTU to 1480 to avoid fragmentation of packets)
name (name; default: pppoe-out1) - name of the PPPoE interface
password (text; default: '') - a user password used to connect the PPPoE server
profile (name) - default profile for the connection
service-name (text; default: '') - specifies the service name set on the access concentrator. Leave it blank unless you have many services and need to specify the one you need to connect to
use-peer-dns (yes | no; default: no) - whether to set the router's default DNS to the PPP peer DNS (i.e. whether to get DNS settings from the peer)
user (text; default: '') - a user name that is present on the PPPoE server

Example
To add and enable PPPoE client on the gig interface connecting to the AC that provides testSN service using user name john with the password password:

```
[admin@RemoteOffice] interface pppoe-client> add interface=gig \
... service-name=testSN user=john password=password disabled=no
[admin@RemoteOffice] interface pppoe-client> print
Flags: X - disabled, R - running
0  R name="pppoe-out1" mtu=1480 mru=1480 interface=gig user="john"
   password="password" profile=default service-name="testSN" ac-name=""
   add-default-route=no dial-on-demand=no use-peer-dns=no
```

Monitoring PPPoE Client

Command name: /interface pppoe-client monitor

Property Description

ac-mac (MAC address) - MAC address of the access concentrator (AC) the client is connected to
ac-name (text) - name of the AC the client is connected to
encoding (text) - encryption and encoding (if asymmetric, separated with '/') being used in this connection
service-name (text) - name of the service the client is connected to
status (text) - status of the client
 • Dialing - attempting to make a connection
- **Verifying password**... - connection has been established to the server, password verification in progress
- **Connected** - self-explanatory
- **Terminated** - interface is not enabled or the other side will not establish a connection

uptime (time) - connection time displayed in days, hours, minutes and seconds

Example

To monitor the `pppoe-out1` connection:

```
[admin@MikroTik] interface pppoe-client> monitor pppoe-out1
  status: "connected"
  uptime: 10s
  encoding: "none"
  ac-name: "10.0.0.1"
  ac-mac: 00:C0:DF:07:5E:E6

[admin@MikroTik] interface pppoe-client>
```

PPPoE Server Setup (Access Concentrator)

Home menu level: `/interface pppoe-server server`

Description

The PPPoE server (access concentrator) supports multiple servers for each interface - with differing service names. Currently the throughput of the PPPoE server has been tested to 160 Mb/s on a Celeron 600 CPU. Using higher speed CPUs, throughput should increase proportionately.

The **access concentrator name** and **PPPoE service name** are used by clients to identity the access concentrator to register with. The **access concentrator name** is the same as the **identity** of the router displayed before the command prompt. The identity may be set within the `/system identity` submenu.

PPPoE users are created in `/ppp secret` menu, see the AAA manual for further information.

Note that if no service name is specified in WindowsXP, it will use only service with no name. So if you want to serve WindowsXP clients, leave your service name empty.

Property Description

authentication *(multiple choice: mschap2 | mschap1 | chap | pap; default: mschap2, mschap1, chap, pap)* - authentication algorithm

default-profile *(name; default: default)* - default profile to use

interface *(name)* - interface to which the clients will connect to

keepalive-timeout *(time; default: 10)* - defines the time period (in seconds) after which the router is starting to send keepalive packets every second. If no traffic and no keepalive responses has came for that period of time (i.e. 2 * keepalive-timeout), not responding client is proclaimed disconnected.

max-mru *(integer; default: 1480)* - Maximum Receive Unit. The optimal value is the MTU of the
interface the tunnel is working over decreased by 20 (so, for 1500-byte Ethernet link, set the MTU to 1480 to avoid fragmentation of packets)

max-mtu (*integer*; default: **1480**) - Maximum Transmission Unit. The optimal value is the MTU of the interface the tunnel is working over decreased by 20 (so, for 1500-byte Ethernet link, set the MTU to 1480 to avoid fragmentation of packets)

max-sessions (*integer*; default: **0**) - maximum number of clients that the AC can serve
- **0** - unlimited

one-session-per-host (*yes | no*; default: **no**) - allow only one session per host (determined by MAC address). If a host will try to establish a new session, the old one will be closed

service-name (*text*) - the PPPoE service name

Notes

The default **keepalive-timeout** value of **10** is OK in most cases. If you set it to **0**, the router will not disconnect clients until they log out or router is restarted. To resolve this problem, the **one-session-per-host** property can be used.

Security issue: do not assign an IP address to the interface you will be receiving the PPPoE requests on.

Example

To add PPPoE server on **ether1** interface providing **ex** service and allowing only one connection per host:

```
[admin@MikroTik] interface pppoe-server server> add interface=ether1 \
  ... service-name=ex one-session-per-host=yes
[admin@MikroTik] interface pppoe-server server> print
Flags: X - disabled
  0 X service-name="ex" interface=ether1 mtu=1480 mru=1480
  authentication=mschap2,mschap,chap,pap keepalive-timeout=10
  one-session-per-host=yes default-profile=default
[admin@MikroTik] interface pppoe-server server>
```

PPPoE Users

Description

The PPPoE users are authenticated through a RADIUS server (if configured), and if RADIUS fails, then the local PPP user database is used. See the respective manual sections for more information:

- **RADIUS client**
- **PPP User AAA**

PPPoE Server User Interfaces

Home menu level: `interface pppoe-server`

Description

This menu allows you to see all the connected users, as well as to set static interface names to be used in
different configurations, where unchangable interface needs to be specified (and, thus, dynamic names cannot be used)

Property Description

- **encoding** *(read-only: text)* - encryption and encoding (if asymmetric, separated with '/') being used in this connection
- **name** *(name)* - interface name
- **remote-address** *(read-only: MAC address)* - MAC address of the connected client
- **service-name** *(name)* - name of the service the user is connected to
- **uptime** *(time)* - shows how long the client is connected
- **user** *(name)* - the name of the connected user (must be present in the user database anyway)

Example

To view the currently connected users:

```
[admin@MikroTik] interface pppoe-server> print
Flags: R - running
# NAME SERVICE REMOTE-ADDRESS USER ENCO... UPTIME
  0 R <pppoe-ex> ex 00:C0:CA:16:16:A5 ex 12s
```

To disconnect the user ex:

```
[admin@MikroTik] interface pppoe-server> remove [find user=ex]
[admin@MikroTik] interface pppoe-server> print
[admin@MikroTik] interface pppoe-server>
```

Application Examples

PPPoE in a multipoint wireless 802.11g network

In a wireless network, the PPPoE server may be attached to an Access Point (as well as to a regular station of wireless infrastructure). Either our RouterOS client or Windows PPPoE clients may connect to the Access Point for PPPoE authentication. Further, for RouterOS clients, the radio interface may be set to MTU 1600 so that the PPPoE interface may be set to MTU 1500. This optimizes the transmission of 1500 byte packets and avoids any problems associated with MTUs lower than 1500. It has not been determined how to change the MTU of the Windows wireless interface at this moment.

Let us consider the following setup where the MikroTik Wireless AP offers wireless clients transparent access to the local network with authentication:
First of all, the wireless interface should be configured:

```bash
[admin@PPPoE-Server] interface wireless> set 0 mode=ap-bridge \
    frequency=2442 band=2.4ghz-b/g ssid=mt disabled=no
[admin@PPPoE-Server] interface wireless> print
Flags: X - disabled, R - running
0 name="wlan1" mtu=1500 mac-address=00:01:24:70:53:04 arp=enabled
   disable-running-check=no interface-type=Atheros AR5211
   radio-name="000124705304" mode=station ssid="mt" area=""
   frequency-mode=superchannel country=no_country_set antenna-gain=0
   frequency=2412 band=2.4ghz-b scan-list=default rate-set=default
   supported-rates-b=1Mbps,2Mbps,5.5Mbps,11Mbps
   supported-rates-a/g=6Mbps,9Mbps,12Mbps,18Mbps,24Mbps,36Mbps,48Mbps,
   54Mbps
   basic-rates-b=1Mbps basic-rates-a/g=6Mbps max-station-count=207
   ack-timeout-dynamic tx-power=default tx-power-mode=default
   noise-floor-threshold=default periodic-calibration=default
   burst-time=disabled fast-frames=disabled wds-mode=disabled
   wds-default-bridge=none wds-ignore-ssid=no
   update-stats-interval=disabled default-authentication=yes
   default-forwarding=yes default-ap-tx-limit=0 default-client-tx-limit=0
   hide-ssid=no security-profile=default disconnect-timeout=3s
   on-fail-retry-time=100ms preamble-mode=both
[admin@PPPoE-Server] interface wireless>
```

Now, configure the Ethernet interface, add the IP address and set the default route:

```bash
[admin@PPPoE-Server] ip address> add address=10.1.0.3/24 interface=Local
```
We should add PPPoE server to the wireless interface:

```
[admin@PPPoE-Server] interface pppoe-server server> add interface=wlan1 \  
  service-name=mt one-session-per-host=yes disabled=no
[admin@PPPoE-Server] interface pppoe-server server> print
Flags: X - disabled
0  service-name="mt" interface=wlan1 max-mtu=1480 max-mru=1480
  authentication=pap,chap,mschap1,mschap2 keepalive-timeout=10
  one-session-per-host=yes max-sessions=0 default-profile=default
```

Finally, we can set up PPPoE clients:

```
[admin@PPPoE-Server] ip pool> add name=pppoe ranges=10.1.0.100-10.1.0.200
[admin@PPPoE-Server] ip pool> print
# NAME       RANGES
0  pppoe      10.1.0.100-10.1.0.200
```

Thus we have completed the configuration and added two users: w and l who are able to connect to Internet, using PPPoE client software.

Note that Windows XP built-in client supports encryption, but RASPPPOE does not. So, if it is planned not to support Windows clients older than Windows XP, it is recommended to switch `require-encryption` to `yes` value in the `default` profile configuration. In other case, the server will accept clients that do not encrypt data.

Troubleshooting
Description

- I can connect to my PPPoE server. The ping goes even through it, but I still cannot open web pages
 Make sure that you have specified a valid DNS server in the router (in /ip dns or in /ppp profile the dns-server parameter).

- The PPPoE server shows more than one active user entry for one client, when the clients disconnect, they are still shown and active
 Set the keepalive-timeout parameter (in the PPPoE server configuration) to 10 if You want clients to be considered logged off if they do not respond for 10 seconds.
 Note that if the keepalive-timeout parameter is set to 0 and the only-one parameter (in PPP profile settings) is set to yes then the clients might be able to connect only once. To resolve this problem one-session-per-host parameter in PPPoE server configuration should be set to yes

- I can get through the PPPoE link only small packets (eg. pings)
 You need to change mss of all the packets passing through the PPPoE link to the value of PPPoE link's MTU-40 at least on one of the peers. So for PPPoE link with MTU of 1480:

  ```
  [admin@MT] interface pppoe-server server> set 0 max-mtu=1440 max-mru=1440
  Flags: X - disabled
  0 service-name="mt" interface=wlan1 max-mtu=1440 max-mru=1440
  authentication=pap,chap,mschap1,mschap2 keepalive-timeout=10
  one-session-per-host=yes max-sessions=0 default-profile=default
  [admin@MT] interface pppoe-server server>
  ```

- My windows PPPoE client obtains IP address and default gateway from the MikroTik PPPoE server, but it cannot ping beyond the PPPoE server and use the Internet
 PPPoE server is not bridging the clients. Configure masquerading for the PPPoE client addresses, or make sure you have proper routing for the address space used by the clients, or you enable Proxy-ARP on the Ethernet interface (See the IP Addresses and Address Resolution Protocol (ARP) Manual)

- My Windows XP client cannot connect to the PPPoE server
 You have to specify the "Service Name" in the properties of the XP PPPoE client. If the service name is not set, or it does not match the service name of the MikroTik PPPoE server, you get the "line is busy" errors, or the system shows "verifying password - unknown error"

- I want to have logs for PPPoE connection establishment
 Configure the logging feature under the /system logging facility and enable the PPP type logs